N-ACYLIMINIUM CYCLIZATIONS VIA REVERSIBLE 2-AZA-COPE REARRANGEMENTS

Hugo Ent, Henk de Koning and W.Nico Speckamp*,
Laboratory of Organic Chemistry, University of Amsterdam,
Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands.

Summary: The existence of a reversible 2-aza-Cope rearrangement in cyclizations of N-acyliminium ions derived from 1'- and 2'-vinyl-N-(3'-butenyl)-5-hydroxy-2-pyrrolidinones is established.

Substituent effects in the rearrangement of N-acyliminium ions of the 2-aza-1,5-hexadienyl type \underline{A} have previously been described in reports from our laboratory and the Hart group. Although cyclizations of this type of N-acyliminium ions generally afford piperidine derivatives \underline{A}' , \underline{gem} -dimethyl b,2c, methoxy b, or phenyl substitution at C-4 of the initially formed N-acyliminium ions \underline{A} encourages rearrangement to isomeric ions \underline{B} , which upon cyclization lead to (partial) formation of pyrrolidine derivatives \underline{B}' . In case of (substituted) phenyl substituents at C-4 the existence of a dynamic equilibrium between the two N-acyliminium ions, via a formal 2-aza-Cope process, has been proved b.

For <u>gem</u>-dimethyl, n-propyl or phenyl substitution at C-3 Hart^{2c} found, besides formation of piperidine derivatives, products which could only be explained via a preceding 2-aza-Cope process, but the reversibility of the rearrangement was not established.

We now report the existence of a dynamic equilibrium in case of a vinyl substituent at C-3 or C-4 of the initial N-acyliminium ion A.

Cyclization of C-1' substituted hydroxylactam $\underline{1a}$ in HCO₂H for 1 h at r.t., followed by saponification of the formate ester, gave indolizidine $\underline{2a}^3$ in 70% yield, besides some unidentified minor products. However, when $\underline{1a}$ was stirred in HCO₂H/AcOH (2:3) for 40 min at 20 °C and subsequently treated with ethanolic KOH, the alcohols $\underline{4a}^3$ (X=OH) and $\underline{5a}^3$ (X=CH) could be isolated in 49.5% and 25% yield, respectively. The reversibility of the aza-Cope process

followed from treatment of $\frac{4a}{4}$ (X=OH) or $\frac{5a}{2}$ (X=OH) with HCO₂H at r.t. for $1\frac{1}{2}$ h which showed, upon work-up, exactly the same crude product as obtained from $\frac{1}{2}$ in HCO₂H according to $\frac{1}{2}$ H NMR spectra. Upon cyclization of the sterically more hindered $\frac{1}{2}$ em-diphenylhydroxylactam $\frac{1}{2}$ b for 1.75 h at 20°C in HCO₂H again only indolizatione formation was observed: main product $\frac{1}{2}$ b (65%) and the epimeric alcohol 3b³ (4.5%) were isolated.

After cyclization of C-2' substituted hydroxylactam $\underline{6a}$ in HCO₂H for $1\frac{1}{2}$ h at 22° C and saponification of the formate esters, flash chromatography gave indolizidine $\underline{7a}^3$ (14%) and a 1:1:2 mixture (61%) of the pyrrolizidines $\underline{8a}^3$, $\underline{9a}^3$ and $\underline{10a}^3$. The pyrrolizidines, characteristic of an aza-Cope rearrangement, could be separated by careful chromatography. When $\underline{6a}$ was treated for 45 min at 20°C in HCO₂H/AcOH (2:3), the crude product saponified in ethanolic KOH for 10 min at 0-5°C and then flash-chromatographed, the aza-Cope intermediate could be captured: $\underline{11a}^3$ (X=OH, 49%) was isolated in addition to a 7:3 mixture (22%) of $\underline{12a}$ and $\underline{6a}$. Here again, the aza-Cope rearrangement appeared to be reversible, because treatment of $\underline{11a}$ (X=OH) with HCO₂H at 21°C for 1 h afforded the same mixture of products as described for $\underline{6a}$.

Cyclization of $\underline{6a}$ in the stronger acid medium CF_3CO_2H for $1\frac{1}{2}$ h at 22°C gave only pyrrolizidine derivatives, while in the weaker acid mixture $HCO_2H/AcOH$ (2:3) after 5 d at r.t. a 31:69 mixture of the indolizidine and pyrrolizidines was obtained. After reaction of $\underline{6a}$ in AcOH for 10 months at r.t. only $\underline{11a}$ (X=OAc) + $\underline{12a}$ were formed, while reaction for 69 h at 100° C in AcOH gave a mixture of butadiene derivatives ($\underline{11a}$ + $\underline{12a}$), indolizidine and pyrrolizidine derivatives in a 3:1:1 ratio, though some decomposition occurred.

Upon introduction of <u>gem</u>-diphenyl substitution in the hydroxylactam pyrrolizidine formation was slightly more favoured. Thus, cyclization of <u>6b</u> in HCO_2H and subsequent saponification gave $\frac{7b^3}{100}$ (10%), $\frac{8b^3}{100}$ (32%) and a mixture (49%) of $\frac{9b}{100}$ + $\frac{10b}{100}$.

The aforementioned results unequivocally prove the existence of a fast equilibrium of the two N-acyliminium forms \underline{A} and \underline{B} . Further reaction of these ions is dependent on factors as substitution patterns and/or acid-solvent systems.

The required hydroxylactams were prepared in the following way: Reaction of vinylmagnesium bromide with butadiene monoxide in ether gave a 4:5 mixture of the alcohols $\underline{13}$ and $\underline{14}$ in 53% yield. N-Alkylation of succinimide with the mixture of alcohols under Mitsunobu conditions in 72% yield, followed by reduction with NaBH₄/H⁺ and flash chromatography afforded the pure hydroxylactams $\underline{1a}^3$ (38%) and $\underline{6a}^3$ (49%). The diphenylhydroxylactams $\underline{1b}^3$ (21%) and $\underline{6b}^3$ (38%) were obtained from 3,3-diphenylsuccinimide in an analogous procedure.

References and Notes

- 1. (a) P.M.M. Nossin and W.N. Speckamp, <u>Tetrahedron Lett.</u>, <u>22</u>, 3289 (1981);
 - (b) P.M.M. Nossin, J.A.M. Hamersma and W.N. Speckamp, <u>ibid.</u>, <u>23</u>, 3807 (1982);
 - (c) H. Ent, H. de Koning and W.N. Speckamp, <u>ibid</u>., <u>24</u>, 2109 (1983).
- 2. (a) D.J. Hart and Y.-M. Tsai, <u>Tetrahedron Lett.</u>, <u>22</u>, 1567 (1981); (b) D.J. Hart and T.-K. Yang, <u>ibid.</u>, <u>23</u>, 2761 (1982); (c) D.J. Hart and T.-K. Yang, <u>J.Org.Chem.</u>, <u>50</u>, 235 (1985).
- 3. All new compounds reported herein gave IR, ^{1}H NMR, and exact mass spectral data consistent with the assigned structures.
- 4. W.C. Still, M. Kahn and A. Mitra, <u>J.Org.Chem.</u>, <u>43</u>, 2923 (1978).
- 5. O. Mitsunobu, M. Wada and T. Sano, <u>J.Amer.Chem.Soc.</u>, <u>94</u>, 679 (1972).
- 6. J.C. Hubert, J.B.P.A. Wijnberg and W.N. Speckamp, Tetrahedron, 31, 1437 (1975).
- 7. F. Salmon-Legagneur, Bull.Soc.Chim.Fr., 580 (1952).

(Received in UK 9 August 1985)

++++++++++